25,653 research outputs found

    Performance Analysis for Time-of-Arrival Estimation with Oversampled Low-Complexity 1-bit A/D Conversion

    Full text link
    Analog-to-digtial (A/D) conversion plays a crucial role when it comes to the design of energy-efficient and fast signal processing systems. As its complexity grows exponentially with the number of output bits, significant savings are possible when resorting to a minimum resolution of a single bit. However, then the nonlinear effect which is introduced by the A/D converter results in a pronounced performance loss, in particular for the case when the receiver is operated outside the low signal-to-noise ratio (SNR) regime. By trading the A/D resolution for a moderately faster sampling rate, we show that for time-of-arrival (TOA) estimation under any SNR level it is possible to obtain a low-complexity 11-bit receive system which features a smaller performance degradation then the classical low SNR hard-limiting loss of 2/π2/\pi (1.96-1.96 dB). Key to this result is the employment of a lower bound for the Fisher information matrix which enables us to approximate the estimation performance for coarsely quantized receivers with correlated noise models in a pessimistic way

    Accuracy of numerical solutions using the eulers equation residuals

    Get PDF
    In this paper we derive sorne asymptotic properties on the accuracy of numerical solutions. We sIlow tIlat the approximation error of the policy function is of the same order of magnitude as the size of the Euler equation residuals. Moreover, for bounding this approximation error tIle most relevant parameters are the discount factor and the curvature of the return function. These findings provide theoretical foundations for the construction of tests that can assess the performance of alternative computational methods

    Asymptotic Signal Detection Rates with 1-bit Array Measurements

    Full text link
    This work considers detecting the presence of a band-limited random radio source using an antenna array featuring a low-complexity digitization process with single-bit output resolution. In contrast to high-resolution analog-to-digital conversion, such a direct transformation of the analog radio measurements to a binary representation can be implemented hardware and energy-efficient. However, the probabilistic model of the binary receive data becomes challenging. Therefore, we first consider the Neyman-Pearson test within generic exponential families and derive the associated analytic detection rate expressions. Then we use a specific replacement model for the binary likelihood and study the achievable detection performance with 1- bit radio array measurements. As an application, we explore the capability of a low-complexity GPS spectrum monitoring system with different numbers of antennas and different observation intervals. Results show that with a moderate amount of binary sensors it is possible to reliably perform the monitoring task

    On the policy function in continuos time economic models

    Get PDF
    In this paper, I consider a general class of continuous-time economic models with unbounded horizon. I study the sets of conditions under which the policy function is continuous, Lipschitz continuous, and Cl differentiable. 1 also single out certain postulates which may prevent higher-order differentiability. The analysis provides, therefore, a fmn foundation to the use of dynamic programming methods in continuous time models with unbounded horizo

    Performance Analysis for Time-of-Arrival Estimation with Oversampled Low-Complexity 1-bit A/D Conversion

    Full text link
    Analog-to-digtial (A/D) conversion plays a crucial role when it comes to the design of energy-efficient and fast signal processing systems. As its complexity grows exponentially with the number of output bits, significant savings are possible when resorting to a minimum resolution of a single bit. However, then the nonlinear effect which is introduced by the A/D converter results in a pronounced performance loss, in particular for the case when the receiver is operated outside the low signal-to-noise ratio (SNR) regime. By trading the A/D resolution for a moderately faster sampling rate, we show that for time-of-arrival (TOA) estimation under any SNR level it is possible to obtain a low-complexity 11-bit receive system which features a smaller performance degradation then the classical low SNR hard-limiting loss of 2/π2/\pi (1.96-1.96 dB). Key to this result is the employment of a lower bound for the Fisher information matrix which enables us to approximate the estimation performance for coarsely quantized receivers with correlated noise models in a pessimistic way

    Consistency properties of a simulation-based estimator for dynamic processes

    Full text link
    This paper considers a simulation-based estimator for a general class of Markovian processes and explores some strong consistency properties of the estimator. The estimation problem is defined over a continuum of invariant distributions indexed by a vector of parameters. A key step in the method of proof is to show the uniform convergence (a.s.) of a family of sample distributions over the domain of parameters. This uniform convergence holds under mild continuity and monotonicity conditions on the dynamic process. The estimator is applied to an asset pricing model with technology adoption. A challenge for this model is to generate the observed high volatility of stock markets along with the much lower volatility of other real economic aggregates.Comment: Published in at http://dx.doi.org/10.1214/09-AAP608 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Network-based ranking in social systems: three challenges

    Get PDF
    Ranking algorithms are pervasive in our increasingly digitized societies, with important real-world applications including recommender systems, search engines, and influencer marketing practices. From a network science perspective, network-based ranking algorithms solve fundamental problems related to the identification of vital nodes for the stability and dynamics of a complex system. Despite the ubiquitous and successful applications of these algorithms, we argue that our understanding of their performance and their applications to real-world problems face three fundamental challenges: (i) Rankings might be biased by various factors; (2) their effectiveness might be limited to specific problems; and (3) agents' decisions driven by rankings might result in potentially vicious feedback mechanisms and unhealthy systemic consequences. Methods rooted in network science and agent-based modeling can help us to understand and overcome these challenges.Comment: Perspective article. 9 pages, 3 figure

    Rational asset pricing bubbles

    Get PDF
    This paper provides a fairly systematic study of general economic conditions under which rational asset pricing bubbles may arise in an intertemporal competitive equilibrium framework. Our main results are concerned with non-existence of asset pricing bubbles in those economies. These results imply that the conditions under which bubbles are possible inc1uding sorne well-known examples of monetary equilibria-are relatively fragile
    corecore